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Abstract—Recent news reveal a powerful 
attacker which breaks data confidentiality by 
acquiring cryptographic keys, by means of 
coercion or backdoors in cryptographic 
software. Once the encryption key is exposed, 
the only viable measure to preserve data 
confidentiality is to limit the attacker’s access 
to the cipher text. This may be achieved, for 
example, by spreading 
ciphertextblocksacrossserversinmultipleadmi
nistrativedomains—thusassumingthattheadv
ersarycannotcompromiseall of them. 
Nevertheless, if data is encrypted with 
existing schemes, an adversary equipped with 
the encryption key, can still compromise a 
single server and decrypt the cipher text 
blocks stored therein. In this paper, we study 
data confidentiality against an adversary 
which knows the encryption key and has 
access to a large fraction of the cipher text 
blocks. To this end, we propose Bastion, a 
novel and efficient scheme that guarantees 
data confidentiality even if the encryption key 
is leaked and the adversary has access to 
almost all cipher text blocks. We analyze the 
security of Bastion, and we evaluate its 
performance by means of a prototype 
implementation. We also discuss practical 
insights with respect to the integration of 
Bastionincommercialdispersedstoragesystem
s.OurevaluationresultssuggestthatBastionisw
ell-suitedforintegrationin existing systems 
since it incurs less than 5% over head 
compared to existing semantically secure 
encryption modes. 
Index Terms—Key exposure, data 
confidentiality, dispersed storage 
 

1 INTRODUCTION 

HE world recently witnessed a massive 
surveillance program aimed at breaking users’ 
privacy. Perpetrators were not hindered by the 
various security measures deployed within the 
targeted services [31].For instance, although 
these services relied on encryption mechanisms 
to guarantee data confidentiality, the necessary 
keying material was acquired by means of 
backdoors, bribe, or coercion. 

If the encryption key is exposed, the only 
viable means to guarantee confidentiality is to 
limit the adversary’s access to the cipher text, 
e.g., by spreading it across multiple 
administrative domains, in the  hope that the 
adversary cannot compromise all of them. 
However, even if the data is encrypted and 
dispersed across different administrative 
domains, an adversary equipped with the 
appropriate keying material can compromise a 
server in one domain and decrypt cipher- text 
blocks stored there in. 

In this paper, we study data confidentiality 
against an adversary which knows the 
encryption key and has access to a large fraction 
of the ciphertext blocks. The adversary can 
acquire the key either by exploiting flaws or 
backdoors in the key-generation  software  [31],  
or by compromising the devices that store  the 
keys (e.g.,  at the user-side or in the cloud). As 
far as we  are  aware ,this adversary invalid a tes 
the security of most cryptographic solutions, 
including those that protect encryption keys by 
means of secret-sharing (since these keys can be 
leaked as soon as they are generated). 

To counter such an adversary, we propose 
Bastion, a novel and efficient scheme which 
ensures that plaintext data cannot be recovered  
as  long  as  the  adversary has access to at most 
all but  two  cipher text  blocks, even when the 
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encryption key is exposed. Bastion achieves this 
by combining the use of standard en- crypt ion 
functions with an  efficient  linear  transform. In 
this sense, Bastion shares similarities with the  
no- tion of all-or-nothing transform. An AONT 
is not an encryption by itself, but can be used as a 
pre-processing step before encrypting the data 
with a block  cipher. This encryption 
paradigm—called AON encryption— was 
mainly intended to slow down brute-force 
attacks on the encryption key. However, AON 
encryption can also preserve data confidentiality 
in case the encryption key is exposed, as long as 
the adversary has access to at most all but one 
ciphertext blocks. Existing AON encryption 
schemes, however, require at least two rounds of 
block cipher encryptions on the data: one pre- 
processing round to create the AONT, followed 
by an- other round for the actual encryption. 
Notice that these rounds are sequential, and 
cannot be parallelized. This results in 
considerable—often unacceptable—overhead to 
encrypt and decrypt large files. On the other 
hand, Bastion requires only one round of 
encryption—which makes it well-suited to be 
integrated in existing dispersed storage systems. 
We evaluate the performance of Bastion in 
comparison with a number of existing 
encryption schemes. Our results show that 
Bastion only incurs a negligible per- show that 
Bastion only incurs a negligible performance 
deterioration (less than 5%) when compared to 
symmetric encryption schemes, and 
considerably improves the performance of 
existing AON encryption schemes [12], [26]. We 
also discuss practical insights with respect to the 
possible integration of Bastion in commercial 
dispersed storage systems. Our contributions in 
this paper can be summarized as follows: 

• We propose Bastion, an efficient scheme 
which ensures data confidentiality against an 
adversary that knows the encryption key and has 
access to a large fraction of the ciphertext 
blocks. 

• We analyze the security of Bastion, and we 
show that it prevents leakage of any plaintext 
block as long as the adversary has access to the 
encryption key and to all but two cipher text 
blocks. 

We evaluate the performance of Bastion 

analytically and empirically in comparison to a 
number of existing encryption techniques. Our 
results show that Bastion considerably improves 
(by more than 50%) the performance of existing 
AON encryption schemes, and only incurs a 
negligible overhead when compared to existing 
semantically secure encryption modes (e.g., the 
CTR encryption mode). 

We discuss practical insights with respect to 
the deployment of Bastion within existing 
storage systems, such as the HYDRA stor grid 
storage system [13],[23]. 

The remainder of the paper is organized as 
follows. InSection2,we define our notation and 
building blocks. In Section 4, we describe our 
model and introduce our scheme, Bastion. In 
Section 5,  we analyze our  scheme  in 
comparison with a number of existing 
encryption primitives. In Section 6, we 
implement and  evaluate the performance of 
Bastion in realistic settings; we also discuss 
practical insights with respect to the integration 
of Bastion within existing dispersed storage 
systems. In Section 7, we overview related work 
in the area, and we conclude the paper in Section 
8. 

 
II. PRELIMINARIES 
We adapt the notation of[12]for our settings. 

We define a block cipher as a map F : {0, 1}k 
×{0, 1}l → {0, 1}l, for positive k and l.  If Pl  is 
the space of all (2l)! l-bits permutations, then for 
any a ∈{0,1}k, we have F(a,·)∈Pl. We also write 
Fa(x)to denote F(a,x). We model F as an ideal 
block cipher, i.e., a block cipher picked at 
random from BC(k,l),where BC(k,l) is  the space 
of all block  ciphers with  parameters k 

and l. For a given block cipher F ∈BC(k, l), we 
denoteF−1∈BC(k,l)asF−1(a,y)orasF−a1(y),for 
a ∈ {0, 1}k. 
Encryption modes 
An encryption mode based on a block cipher 

F/F −1 is given by a triple to f algorithms = (K, 
E, D)where: 

K The key generation algorithm  is a  
probabilistic algorithm which takes as input a 
security parameter k and outputs a key a 
∈ {0, 1}k that specifies Fa and F −1. 
E The encryption algorithm is a probabilistic 

algorithm which takes as input a message 
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x∈{0,1}∗,andusesFaandFa−1asoracles to 
output ciphertext y. 

The decryption algorithm is a deterministic 
algorithm which takes as input a ciphertext y, 
and uses Fa and F −1as oracles to output 

Plain textx∈{0,1}∗,or⊥ify is invalid. 
For correctness, we require that for any key a 

← K(1k),−1foranymessagex∈{0,1−1}∗,and for 
any y←E a a (x), we have x ← Da a (y). 

Security is defined through the following 
chosen- plaintext attack (CPA) game adapted for 
block ciphers: 

 
In the in d experiment, the adversary has 

unrestrictedoracleaccesstoEFa,aF−1duringthe“fi
nd”stage.Atthis 

point, A outputs two messages of equal length 
x0, x1, and some state information that are 
passed as input when the adversary is initialized 
for the “guess” stage 
(e.g.,statecancontainthetwomessagesx0,x1).Duri
ng the “guess” stage, the adversary is given the 
ciphertext of one message out of x0, x1 and must 
guess which message was actually encrypted. 
The advantage of the adversary in the ind 
experiment is: Advind(A) = |Pr[Expind(A, 0) = 
1]−Pr[Expind(A, 1) = 1] 

Definition  1.  An  encryption  mode  =  (K, E , 
D)  is   ind secure if for any probabilistic 
polynomial time (p.p.t.)adversary A, we have 
AdvQind(A)≤ǫ, where ǫ is a negligible function 
in the security parameter. 

REMARK 1. The ind  experiment  allows  the  
adversary to see the entire (challenge) 
ciphertext. In a sce- nario where ciphertext  
blocks are dispersed  across  a number of storage 
servers, this means that the ind- adversary can 
compromise all storage servers and fetch the 
data stored there in. 

REMARK 2. In the ind experiment (and in 
other experiments used in this paper), we adopt 
the Shannon Model of a block cipher that, in 
practice, instantiates an independent random 
permutation for every different key. This model 

has been used in previous  related work [3], [12], 
[17] to disregard the algebraic or cryptanalysis 
specific to block ciphers and treat them as a 
black-box transformation. 

 
All or Nothing Transforms 
An All or Nothing Transform (AONT) is an 

efficiently computable transform that maps 
sequences of input blocks to sequences of output 
blocks with the following properties: (i) given all 
output blocks, the transform can be efficiently 
inverted, and (ii) given all but one of the output  
blocks,  it  is  infeasible  to  compute  any  of the 
original input blocks. The formal syntax of an 
AONTi 

Q given by a pair of p.p.t. algorithms 
E, D) where: = ( 
E The encoding algorithm is a probabilistic 

algorithm which takes as input a message x∈ 
{0,1}∗,and out puts a pseudociphertexty. 
D The decoding algorithm is a deterministic 

algorithm which takes as input a pseudo- cipher 
text y, and outputs either a message x 
∈{0,1}∗or ⊥ to indicate that the input 

pseudo-cipher text is invalid. 
For correctness, we require that for 

allx∈{0,1}∗, and for all y ← E(x), we have x ←
D(y). 

The literature comprises a number of security 
definitions for AONT (e.g., [8], [12], [26]). In 
this paper, we rely on the definition of [12] 
which uses the aont experiment below. This 
definition specifies a block length  l such  that 
the  pseudocipher text  y  can  be written as y = 
y[1] . . . y[n], where |y[i]| = l and n ≥1. 

 
On input j, the oracle Yb  returns yb[j] and 

accepts  up to (n − 1) queries. The aont 
experiment models an adversary which must 
distinguish between the encod- ing of a message 
of its choice and a random string (of the same 
length),while the adversary is allowed access 
to all but one encoded blocks. The advantage of 
A in  the aont experiment is given by 

y0 ← E(x) 
y1 ← {0, 1}|y0 | 

b′ ← AYb (guess, state) 

Expaont(A, b) 
x, state ← A(find) 

(xb) b 
b′ ← A(guess, yb, state) 

(find) 
−1 
a Fa,F 

E 0 1 

−1 
a Fa,F x , x , state ← A 

y ← E 

Expind(A,b) 
F ← BC(k, l) 
a ← K(1k) 
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Advaont(A) = |Pr[Expaont(A, 0) 
=1]− 
Pr[ExpaQont(A,1)=1]| 
Q 
Definition 2. An All-or-Nothing Transform = (E, 
D) isaoQnt secure if for any p.p.t. adversary A, 
we have Adv (A) ≤ǫ, where ǫ is a negligible 
function in the security parameter. 

Known AONTs 
Rivest[26]suggested the package transform 

which leverages a block cipher F/F −1  and maps 
m block strings to 

n = m + 1 block strings. The first n − 1 output 
blocks are computed by XORing the i-th 
plaintext block with FK(i), where K is a random 
key. The nth output block is computed  XORing  
K  with the  encryption  of each 

of the previous output blocks, using a key K0 
that is publicly known. That is, given 
x[1]...x[m],the package transform outputs y[1] . . 
. y[n], with n = m + 1,where: 

 
y[i] = x[i] ⊕FK(i), 1 ≤ i ≤ n − 1, 
y[n]=K FK0 (y[i] ⊕i). 

i=1 
Desai [12] proposed a faster version where the 
block cipher round which uses K0 is skipped and 
the last output block is set to y[n] = K  in−1 y[i]. 
Both  AONTs  are secure according to Definition 
2[12]. 
REMARK 3. Although most proposed AONTs 
are based on block ciphers [12], [26], an AONT 
is not an encryption scheme, because there is no 
secret-key information associated with the 
transform. Given all the output blocks of the 
AONT, the input can be recovered without 
knowledge of any secret. 
III. SYSTEM  AND SECURITY MODEL 
In this section, we start by detailing the system 
and security models that we consider in the 
paper. We then argue that existing security 
definitions do not capture well the assumption of 
key exposure, and propose a new security 
definition that captures this notion. 

System Model 
We consider a multi-cloud storage system 

which can leverage a number of commodity 
cloud providers (e.g., Amazon, Google) with the 
goal of distributing trust across different 
administrative domains. This “cloud of clouds” 

model is receiving increasing attention nowa- 
days [4], [6], [32] with cloud storage providers 
such as EMC, IBM, and Microsoft, offering 
products for multi- cloud systems [15], [16], 
[29]. 

In particular, we consider a system of s storage 
servers S1, . . . , Ss, and a collection of users. We 
assume that each server appropriately 
authenticates users. For simplicity and without 
loss of generality, we focus on the read/write 
storage abstraction of [21] which exports two 
operations: 

write(v)This     routine    splits    v     into    s   
pieces 
{v1,...,vs}and sends(vj)to server Sj, for 

j ∈ [1 . . . s]. 
read(•)There ad routine fetches the stored 

value v from the  servers .For each j∈[1...s],piece 
vj  is downloaded from server Sj  and all 

 
Fig. 1. Our attacker model. We assume an 

adversary which can acquire all the 
cryptographic secret material, and can 
compromise a large fraction (up to all but one) of 
the storage servers. pieces are combined into v. 
We assume that the initial value of the storage is 
a special value ⊥, which is not a valid input 
value for a write operation. 

Adversarial Model 
We assume a computationally-bounded 

adversary A which can acquire the long-term  
cryptographic  keys  used to encrypt the data. 
The adversary may do  so either  (i) by 
leveraging flaws or backdoors in the 
key-generation software [31], or (ii) by 
compromising the device that stores the keys (in 
the cloud or at the user). Since ciphertext blocks 
are distributed across servers hosted within 
different domains, we assume that the adversary 
cannot compromise all storage servers (cf. 
Figure1). 

In particular, we assume that the adversary can 
com- promise all but one of the servers and we 
model this adversary by giving it access to all but 
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λ ciphertext blocks. 
Note that if the adversary also learns the user’s 

credentials to log into the storage servers and 
downloads all the ciphertext blocks, then no 
cryptographic mechanism can preserve data 
confidentiality. We stress that compromising the 
encryption key does not necessarily imply the 
compromise of the user’s credentials. For 
example, encryption can occur on a 
specific-purpose device [10], and the key can be 
leaked, e.g., by the manufacturer; in this 
scenario, the user’s credentials to access the 
cloud servers are clearly not compromised. 

 
(n − λ)-CAKE Security 
Existing security notions for encryption modes 

capture data confidentiality against an adversary 
which does not have the encryption key. That is, 
if the key is leaked, the confidentiality of data is 
broken. 

In this paper we study an adversary that has 
access to the encryption key but does not have 
the entire ciphertext. We therefore propose a 
new security definition that models our scenario. 

As introduced above, we allow the adversary 
to access an encryption/decryption oracle and to 
“see” all but λ ciphertext blocks. Since 
confidentiality with λ = 0 is clearly not 
achievable1, we instead seek an encryption 
mode where λ =  1.  However,  having  the 
flexibility of  setting  λ ≥  1  allows the  design  of  
more efficient schemes  while  keeping  a  high  
degree  of  security in practical deployments. 
(See Remark 7.) 

We call our security notion (n−λ) Ciphertext 
Access under Key Exposure, or (n − λ)CAKE. 
Similar to [12], (n − λ)CAKE specifies a block 
length l such that a ciphertexty can be written as 
y=y[1]...y[n]where 
|y[i]| = l and n >1. 

 
The adversary has unrestricted access to E a a 

in both the  “find”  and “guess”  stages.  On input 
j, the oracle Yb returns yb [j] and accepts up to n 
− λ queries. Ontheonehand,unrestricted 

oracleaccesstoEaFa,F−1 captures the 
adversary’s knowledge of the secret key. On the 
other hand, the oracle Yb models the fact that the 
adversary has access to all but λ ciphertext 
blocks. This is the case when, for example, each 
server stores λ ciphertext blocks and the 
adversary cannot compromise all servers. The 
advantage of the adversary is defined as: 

(n−λ)CAKE (n−λ)CAKE 
AdvQ (A)=Pr[ExpQ (A, 1) =1]− 
Pr[Exp(Qn−λ)CAKE(A,0)=1] 
Definition 3.  An  encryption  mode  =  (K,  E , 

D) is (n−λ)CAKE secure if for any p.p.t. 
adversary A, we have AdvQ (A) ≤ ǫ, where ǫ is 
a negligible function in the security parameter. 

Definition 3 resembles Definition 2 but has 
two fundamental differences.  First,  (n − 
λ)CAKE refers to a keyed scheme and gives the 
adversary unrestricted access to the 
encryption/decryption oracles. Second, 

(n − λ)CAKE relaxes the notion of 
all-or-nothing and parameterizes the number of 
ciphertext blocks that are not given to the 
adversary. As we will show in Sec-  tion 4.2, this 
relaxation allows us to design encryption modes 
that are considerably more efficient than existing 
modes which offer a comparable level of 
security. 

We stress that (n −λ)CAKE does not consider 
confidentiality against “traditional” adversaries 
(i.e., adversaries which do not know the 
encryption key). Indeed, an indadversary is not 
given the encryption key but has access to all 
ciphertext blocks. That is, the ind- adversary can 
compromise all the s storage servers. An (n − 
λ)CAKE-adversary is given the encryption key 

but can access all but λ ciphertext blocks. In 
practice, 

 
1. Any party with access to all the ciphertext 
blocks and the encryption key can recover the 
plaintext. 

the (n − λ)CAKE-adversary has the encryption 
key but can compromise up to s − 1 storage 
servers. Therefore, we seek an encryption mode 
with the following properties: 

1)  must be ind secure against an adversary 
which does not know the encryption key but has 
access to all ciphertext blocks (cf. Definition 1), 
by compromising all storage servers. 

(guess, state) 
−1b (x ) a a 

−1 F ,F 
b 

(find) 
Fa,F 

E 0 1 
−1 
a x , x , state ← A 

y ← E 
b′←AYb,EFa,aF 

Exp(n−λ)CAKE(A, b) 
a ← K(1k) 
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2)  must be (n − λ)CAKE secure against an 
adversary which knows the encryption key but 
has access to n − λ ciphertext blocks (cf. 
Definition3), since it cannot compromise all 
storage servers. 

 
REMARK 4. Property 2 ensures data 

confidentiality against the attacker model 
outlined in Section 3.2. Nevertheless, we must 
also account for weaker ad- versaries (i.e., 
traditional adversaries) that do not know the 
encryption key but can access the entire 
ciphertext —hence, ind security. Note that if the 
adversary which has access to the encryption 
key, can also access all the ciphertext blocks, 
then no cryptographic mechanism can preserve 
data confidentiality. 

 
4 BASTION: SECURITY AGAINST KEY 

EXPO- SURE 
In this section, we present our scheme, dubbed 

Bastion, which ensures that plain text data 
cannot be recovered as long as the adversary has 
access to all but two ciphertext blocks—even 
when the encryption key is exposed. We then 
analyze the security of Bastion with respect to 
Definition 1 and Definition3. 

 
Overview 
Bastion departs from existing AON encryption  

schemes. Current schemes require a 
pre-processing round of block cipher encryption 
for the AONT, followed by another round of  
block  cipher  encryption (cf. Figure 2 (a)). 
Differently, Bastion first encrypts the data with 
one round of block cipher encryption, and then 
applies an efficient linear post-processing to the 
ciphertext (cf. Figure 2 (b)). By doing so, 
Bastion relaxes the notion of all-or-nothing 
encryption at the benefit of increased 
performance (see Figure2). 

More specifically, the first round of Bastion 
consists of CTR mode encryption with a 
randomly chosen  key K,  i.e.,  y′  =  Enc(K,  x).  
The    output   ciphertext   y′  is 

then fed to a linear transform which is inspired 
by the scheme  of  [28].  Namely,  our  transform  
basically computes y = y′ • A where A is a 
square matrix such that:(i) all diagonal elements 
are set to 0, and (ii) the remaining off-diagonal 

elements are set to 1. As we shown later, such  a  
matrix is invertible and  has  the  nice  property 

that A−1 =  A.  Moreover,  y  =  y′•  A  
ensures that each input block y′j will  depend 
on  all  output  blocks  yi except from yj. This 
transformation—combined with the fact that the 
original input blocks have high entropy (due to 
semantic secure encryption)—result in an 
indsecure and (n − 2)CAKE secure encryption 
mode. In the following section, we show how to 
efficiently compute y′ • A by means of bitwise 
XOR operations. 

 Bastion: Protocol Specification 
We now detail the specification of Bastion. 
On input a security parameter k, the key 

generation algorithm of Bastion  outputs  a  key  
K  ∈ {0,  1}k  for the underlying block-cipher. 
Bastion leverages block cipher encryption in the 
CTR mode, which on input a plaintext bitstream 
x, divides it in blocks x[1],...,x[m], where m is 
odd2 such that each block has size l.3 The  set of 
input blocks is encrypted under key K, resulting 

in ciphertext y′ = y′[1], . . . , y′[m + 1], 
where y′ [m + 1] is an initialization vector 
which is randomly chosen from 

{0, 1}l. 
Next, Bastion applies a linear transform to y′ 

as follows. Let  n = m + 1 and assume A to be an  
n-  by-   n matrix where  element  ai,j  =  0lif   i   =  
j   or ai,j  = 1l, otherwise.4 Bastion computes y = 
y′ • A, where additions and multiplications 
are implemented by means of XOR and AND 
operations, respj=enct′ively. 

That is, y[i] ∈y is computed as y[i] = j=1 (y 
[j]∧aj,i), 

for i = 1 . . . , n. 
Given  key K,  inverting Bastion  entails  

computing y′ = y • A−1 and decrypting y′ 
using K. Notice that matrix A is invertible and A 
= A−1. The pseudo code of the encryption and 
decryption algorithms of  Bastion are shown in 
Algorithms 1 and 2, respectively. Both 
algorithms use F to denote a generic block cipher 
(e.g., AES). 

In our implementation, we efficiently compute 
the linear transform using 2n XOR operations as 
follows: 

t=y′[1]⊕y′[2]⊕•••⊕y′[n], y[i] = t 
⊕y′[i], 1 ≤ i ≤n. 
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Note that y′[1] . . . y′[n] (computed up to 
line 6 in Algo- rithm 1) are the outputs of the 
CTR encryption mode, where y′ [n] is the 
initialization vector. Similar to the 

CTR encryption mode, the final output  of  
Bastion  is one block larger than the original 
input. 

 
Correctness Analysis 
We show that for every x ∈ {0,  1}lm  where  

m  is odd, and for every K ∈ {0,  1}l,we  have  x  
=  Dec(K,Enc(K,x)). 

In particular, notice that lines 2-6 of Algorithm 
1 and lines 9-12 of Algorithm 2 correspond to 

the standard CTR encryption and decryption 
routines, respectively. 

1. This requirement is essential for the 
correctness of the sub- sequent linear transform 
on the ciphertext blocks. That is, if m is even, 
then the transform is not invertible. 

2. l is the block size of the particular block 
cipher used. 

3. 0l and 1l denote a bitstring of l zeros and a 
bitstream of ones, respectively. 

 
 
Fig.2.(a)CurrentAONencryptionschemesrequireapre-processingroundofblockcipherencryptionforth
eAONT,followedbyanother round of block cipher encryption. (b) On the other hand, Bastion first 
encrypts the data with one round of block cipher encryption, and then applies an efficient linear 
post-processing to theciphertext 
 

 
 

 
Therefore, we are only left to show that the linear 
transformation computed in lines 7-14 of 
Algorithm 1 is correctly reverted in lines 2-8 of 
Algorithm 2. In other  words,  we  need  to  show  
that  t  =  i=1..n  y[i] (as computed  in  the  
decryption  algorithm)  matches t = i=1..n y [i]
′ (as computed in the encryption algo- rithm). 
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Notice that the last step holds because n  is  even 
and therefore each y′[j] is XORed for anodd 
number oftimes. 

REMARK 5. We point out  that  Bastion  is  
not  restricted to the CTR encryption mode and 
can be instanti- ated with other ind-secure block 
cipher (and stream ciphers) modes of encryption 
(e.g., CBC,OFB). 

Tointerface with our cloud storage model 
described in Section 3.1, we assume that each 
user encrypts the data using Bastion before 
invoking the write() routine. 
Morespecifically,letEnc(K,•),Dec(K,•)denotethe 

encryption and decryption  routines of  
Bastion,respec- 

tively. Given  encryption key K  and a  file f, 
the user computes v ← Enc(K,f) and invokes 
write(v) in order 
touploadtheencryptedfiletothecloud.Inthissettin
g, key K remains stored at the user ’

smachine.Similarly, 
todownloadthefilefromthecloud,theuserinvokes 
read(•)tofetchvandrunsf←Dec(K,v)torecoverf. 

Security Analysis 
In this section, we show that Bastion is 

mathrmind 
secure and (n − 2)CAKE secure. 
LEMMA 1. Bastion is ind secure. 

Proof 1. Bastion uses an ind secure encryption  
mode to encrypt a message, and then applies a 
linear 

transform on the ciphertext blocks. It is 
straight- forward to conclude that Bastion is ind 
secure. In other words, a polynomial-time 
algorithm A that has non-negligible advantage in 
breaking the ind security  of  Bastion  can  be  
used  as  a  black-boxby 

another  polynomial-time  algorithm  B to  
breakthe 

ind security of  the underlying encryption  
mode.  In 

particular, B forwards A’s queries to its oracle 
and applies the linear transformation of 
Algorithm 1 lines 7-14 to the received ciphertext 
before forward- ing  it  to  A.  The  same   
strategy  is  used  when   A 

outputs two  messages at the end of  the  find  
stage: the two messages are forwarded to B’s 
oracle; upon receiving the challenge ciphertext, 
B applies the linear transformation and forwards 
it  to  A.  When A replies with its guess b′, B 
outputs the same  guess. It is easy to see that if A 
has non-negligible advantage in guessing 
correctly which messagewas encrypted, so does 
B. Furthermore, the runningtime LEMMA 3. 
Bastion is (n − 2)CAKE secure. 

Proof 3. The security proof of Bastion 
resembles the standard security proof of the CTR  
encryption mode and relies on the existence of 
pseudo-random 
permutations.Inparticular,givenapolynomial-typ
e algorithm A which has non-negligible 
advantage in the (n − λ)CAKE experiment with λ 
= 2, we can construct a polynomial-time 
algorithm B which has non-negligible advantage 
in distinguishing between a true random 
permutation and a pseudo-random permutation. 

B has access to oracle O and uses it to answer 
the encryption and decryption queries issued by 
A. In particular, A’s queries are answered as 
follows: 

• Decryption query for y[1]. . . y[n] 
1) Computet =y[1]⊕...⊕y[n] 

2) Compute y′[i] = y[i] ⊕t, for 1 ≤ i≤ n 
3) Compute x[i] = y′[i] ⊕O(y′[n] + i), for 

1≤ 
i ≤ n −1 
4) Returnx[1]...x[n−1] 
• Encryptionqueryforx[1]...x[n−1] 
1) Pick random y′[n] ∈ {0,1}l 
2) Compute y′[i] = x[i] ⊕O(y′[n] + i), for 

1≤ 
i ≤ n −1 
3) Computet=y′[1]⊕...⊕y′[n] 
4) Compute y[i] = y′[i] ⊕t, for 1 ≤ i≤ n 
5) Returny[1]...y[n] 
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When A outputs two messages x1[1] . . . 

x1[n−1] and x2[1] . . . x2[n − 1], B picks b ∈ {0, 
1} at random and does the following: 

1) Pick random y′ [n] ∈ {0,1}l 
2) Computey[i]=xb[i]⊕O(y[n],i),for1≤i≤n−1 

3) Compute t = yb[1] ⊕. . . ⊕yb[n] 
4) Compute yb[i] = y′b[i] ⊕t, for 1 ≤ i ≤n 
At this point, A selects (n − 2) indexes i1, . . . 

in−2 and B returns the corresponding yb[i1], . . . , 
yb[in−2]. Encryption and decryption queries are 
answered as above. When A outputs its answer b
′, B outputs 1 

if b = b ′ , and 0 otherwise. It is 
straightforward to see that if A has advantage 
larger than negligible to guess b, then B has 
advantage larger than negligible to distinguish a 
true random permutation from a pseudorandom 
one. Furthermore, the number of queries issued 
by B to its oracle amounts to the number of 
encryption and decryption queriesissued by A. 
Note that by Lemma 2, during the guess stage, A 
cannot issue a decryption query on the challenge 
ciphertext since with only (n − 2) blocks, finding 
the remaining blocks is infeasible. 

 
REMARK 6. Bastion is not (n − 1)CAKE 

secure. As shown in the proof of Lemma 2, the 
adversary can recover one block of y′ given 
any (n − 1) blocks of y. If 

the adversary recovers y′[n] that is  used as  
an  IV  in the CTR encryption mode, the 
adversary can easily win the (n − 1)CAKE game. 
Recall that our security definition allows the 
adversary to learn the encryptionkey. 

REMARK 7. Bastion is (n − 2)CAKE secure 
according to Definition 3. However, in a 
practical  deployment, we expect that each file 
spans several thousands blocks 5.When those 
blocks are evenly spread across servers, each 
server will store a larger number of 
 

blocks. Therefore, an (n − 2)CAKE secure 
scheme such as Bastion clearly preserves data 
confidential- ity unless all servers are 
compromised. 
4. For example, a 10MB file encrypted using 
AES has morethan 600Kblocks. 

TABLE 1 

ComparisonbetweenBastionandexistingconstruc
ts.Weassumeaplaintext 
ofm=n−1blocks.Sinceallschemesaresymmetric, 
weonlyshow 
thecomputationoverheadfortheencryption/encod
ingroutineinthecolumn“Computation”(“b.c.”isth
enumberofblock cipher operations; “XOR” is the 
number of XORoperation 
 ⋆Recall that an ind-adversary can access all 
storage servers to fetch all ciphertext blocks. 
Therefore, the adversary can also fetch all the 
key shares and compute the encryption key. 
 

IV.COMPARISON TO EXISTING 
SCHEMES 

In what follows, we briefly overview several 
encryption modes and argue about their 
security (according to Definitions 1 and 3) and 
performance when compared to Bastion. 
CPA-encryption modes 
Traditional CPA-encryption modes, such as 

the CTR mode, provide ind security but are only 
1CAKE secure. That is, an adversary equipped 
with the encryption key must only fetch two 
ciphertext blocks to break data confidentiality.6 

CPA-encryption and secret-sharing 
Another option is to rely on the combination of 

CPA secure encryption modes and 
secret-sharing. 

If the file f is encrypted and then shared with 
ann-out-of-nsecret-sharingscheme(denotedas“e
ncrypt- then-secret-share” in the following), then 
the construc- tion  is  clearly  (n  −  1)CAKE  
secure  and  is  also ind secure. However, 
secret-sharing the ciphertext  comes at 
considerable storage costs; for example, each 
share would be as large as the file f using a 
perfect secret sharing scheme—which makes it 
impractical for storing large files. 

Secret-sharing the encryption key and 
dispersing its shares across the storage servers 
alongside the cipher- 
textisnotsecureagainstanind-adversary.Indeed,if
the adversary can access all the storage servers 
and down- load all ciphertext blocks, the 
adversary may as well download all key shares 
and compute the encryption key. 
1. WeassumethattheCTRencryptionroutine 
startswitha random IV that is incremented at 
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every blockencryption. 
AON encryption 
Recall that an AONT is not an encryption 

scheme and does not require the decryptor to 
have any secret key. That is, an AONT is not 
secure against an ind-adversary which can 
access all the ciphertext blocks. One alter- native 
is to combine the use of AONT with standard 
encryption. Rivest [26] suggests to pre-process a 
mes- sage with an AONT and then encrypt its 
output  with  an encryption mode. This paradigm 
is referred to in the literature as AON encryption 
and provides(n−1)CAKE security.  Existing  
AON  encryption  schemes requireat least two 
rounds of block cipher encryption with two 
different keys [12], [26]. At least one round is 
required for the actual AONT that embeds the 
first encryption key in the pseudo-ciphertext (cf. 
Section 2). An addi- tional round uses another 
encryption key that is kept secret to guarantee 
CPA-security. However, two encryp- tion 
rounds constitute a considerable overhead when 
encrypting and decrypting large files. In 
Appendix A, we describe possible ways  of  
modifying  the   AONTs of [26] and [12] to 
achieve ind security and (n −1)CAKE 

security without adding another round of  
blockcipher 

encryption, and we discuss their shortcomings. 
Clearly, these solutions are  either  not  

satisfactory in terms of security or incur a large 
overhead when compared to Bastion and may 
not be suitable to store large files in a 
multi-cloud storagesystem. 

 
Performance Comparison 
Table 1  compares  the  performance  of  

Bastion  with the encryption schemes considered 
so far, in terms of computation, storage, 
andsecurity. 
Given a plaintext of m blocks, the CTR 
encryption mode outputs n = m + 1 ciphertext 
blocks, computed with (n − 1) block cipher 
operations and (n − 1) XOR 

operations. The CTR encryption mode is ind 
secure but only 1CAKE secure. 
Rivest AONT outputs a  pseudo-ciphertext  of  n  
= m + 1 blocks using 2(n − 1) block cipher 
operations and 3(n−1) XOR operations. Desai 
AONT outputs the same number of blocks but 

requires only (n − 1) block cipher operations and 
2(n − 1) XOR operations. Both Rivest AONT 
and Desai AONT are, however, not ind secure 
since the encryption key used to compute the 
AONT output is embedded in the output itself. 
Encrypting the output of Rivest AONT or Desai 
AONT with a stan- dard encryption mode (both 
[12] and [26] use the ECB encryption mode), 
requires additional n block cipher 
operations,andyieldsanAONencryptionthatisind 

secure7 and (n − 1)CAKE secure. 
Encrypt-then-secret- share (cf. Section 4.4) is 
ind secure and (n − 1)CAKE secure. It requires (n 
− 1) block cipher operations and n XOR 
operations if additive secret sharing is used. 
How- ever secret-sharing encryption results in a 
prohibitively large storage overhead of n2blocks. 
Bastion also outputs n  =  m +  1 ciphertext  
blocks. It achieves ind security and (n − 2)CAKE 
security with only (n − 1) block cipher 
operations and (3n − 1) XOR operations.8 
We conclude that Bastion achieves a solid 
tradeoff between the computational overhead of 
existing AON encryption modes and the 
exponential storage overhead of secret-sharing 
techniques, while offering a compa- rable level 
of security. In Section 6, we confirm the superior 
performance of Bastion by means of imple- 
mentation. 
 
 
 

V.IMPLEMENTATION AND 
EVALUATION 

In this section, we describe and evaluate a 
prototype implementation modeling a 
read-write storage system based on Bastion. 
We also discuss insights with respect to the 
integration of Bastion within existing 
dispersed storage systems. 
Implementation Setup 
Our prototype, implemented in C++, emulates 
the read- write storage model of Section 3.1. 
We instantiate Bastion with the CTR 
encryption mode (cf. Figure 1) using both 
AES128 and Rijndael256, implemented using 
the libmcrypt.so. 4.4.7 library. Since this 
library doesnot natively support the CTR 
encryption mode, we use it for the generation 
of the CTR key stream, which is later XORed 
with the plaintext. 
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We compare Bastion with the AON encryption 
schemes of Rivest [26] and Desai [12]. For 
baseline comparison, we include in our 
evaluation the CTR encryption mode and the 
AONTs due to Rivest [26] and 

1. Security according to Definition 1 is achieved 
because the key used to create the AONT is 
always random, even if the key used to add the 
outer layer of encryption isfixed. 

2.Bastionrequires(n−1)XORoperationsfortheC
TRencrytioand 2n XOR operations for the 
lineartransform. 

Desai [12], which are used in existing 
dispersed storage systems, e.g., Cleversafe 
[25]. We do not evaluate the performance of 
secret-sharing the data because of its 
prohibitively large storage overhead (squared 
in the number of input blocks). We evaluate 
our implemen- tations on an Intel(R) Xeon(R) 
CPU E5-2470 running at 2.30GHz. Note that 
the processor clock frequency might have been 
higher during the evaluation due to the 
TurboBoost technology of the CPU. In our 
evaluation, we abstract away the effects of 
network delays and congestion, and we only 
assess the processing perfor- mance of the 
encryption for the considered schemes. This is 
a reasonable assumption since all schemes are 
length-preserving (plus an additional block of l 
bits), and are therefore likely to exhibit the 
same network performance. Moreover, we 
only measure the per- formance incurred 
during encryption/encoding, since all schemes 
are symmetric, and therefore the decryp- 
tion/decoding performance is comparable to 
that of the encryption/encodingprocess. 

We measure the peak through put and the 
latency ex- hibited by our implementations 
w.r.t. various file/block sizes. For each data 
point, we report the average of 30 runs. Due to 

their small widths, we do not show the 
corresponding 95% confidence intervals. 
Evaluation Results 
Our evaluation results are reported in Figure 3 
and Figure 4. Both figures show that Bastion 
considerably improves (by more than 50%) the 
performance of ex- isting (n − 1)CAKE 
encryption schemes and only in- curs a 
negligible overhead when compared to 
existing semantically secure encryption modes 
(e.g., the CTR encryption mode) that are only 
1CAKE secure. 
In Figure 3, we show the peak throughput 
achie- ved by the CTR encryption mode, 
Bastion, Desai AONT/AON, and Rivest 
AONT/AON schemes. The peak throughput 
achieved by Bastion  reaches  almost 72 MB/s 
and is only 1% lower than the one  exhibited  
by the CTR encryption mode. When compared 
with ex- isting (n − 1)CAKE secure schemes, 
such as DesaiAON encryption  and  Rivest   
AON  encryption,   our results show that the 
peak throughput of Bastion is almost twice as 
large as that of Desai AON encryption, and 
more than three times larger than the peak 
throughput of Rivest AON encryption. 

We also evaluate the performance of Bastion, 
with respect to different block sizes of the 
underlying block cipher.Our results show 
that—irrespective of the block size—Bastion 
only incurs a negligible performance de- 
terioration in peak throughput when compared 
to the CTR encryption mode. Figures 4(a) and 
4(b) show the latency (in ms) incurred by the 
encryption/encoding routines for different file 
sizes. The latency of Bastion  is comparable to 
that of the CTR encryption mode—for both 
AES128 and Rijandael256—and results in a 
con- siderable improvement over existing 
AON encryption schemes (more than 50% 
gain inlatency). 
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Fig. 3. Peak throughput comparison. Unless otherwise specified, the underlying block cipher is 
AES128. Each data point is averaged over30runs.Histogramsindarkbluedepict 
encryptionmodeswhichoffercomparablesecuritytoBastion.Lightbluehistogramsreferto 
encryption/encoding modes where individual ciphertext blocks can be inverted when the key is 
exposed. 

 
Fig. 4. Performance evaluation of Bastion. Each 
data point in is 
averagedover30runs.Unlessotherwisespecified,t
heunderlying 
blockcipherisAES-128.CTR(256)and 
Bastion(256)denote the 

CTR encryption  mode and  Bastion  encryption 
routine,respectively, instantiated with 
Rijandael256. 

Deployment within HYDRAstor 

Recall that Bastion preserves data 
confidentiality against an adversary that has the 
encryption key as long as the adversary does not 
have access to two ciphertext blocks. In a 
multi-cloud storage system, if each server stores 
at least two ciphertext blocks, then Bastion 
clearly preserves data confidentiality unless all 
servers are compromised. 

In scenarios where servers can be  faulty,  
Bastion  can be combined with information 
dispersal algorithms (e.g., [24]) to provide data 
confidentiality and fault tolerance. Recall that 
information dispersal algorithms (IDA), 
parameterized with t1, t2 (where t1 ≤ t2), encode 
data into t2 symbols such that the original data 
can be recovered from any t1 encoded symbols. 
In our multi- cloud  storage  system  (cf.  Section  
3.1),  the ciphertext 

output by Bastion is then fed to the IDA 
encoding routine, with symbols of size l bits, and 
with parameters 

t2 ≥ 2s, t1 < t2, where s is the number of 
available servers. Since the output of the IDA is 
equally spread across the  s servers, by setting  t2    
≥   2s,   we  ensure 

that  each  server  stores  at  least  two  ciphertext 
blocks 
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worth of data. Finally, the encoded symbols are  
input  to the write() routine that  distributes 
symbols evenly  to each of the storage servers. 
Recovering f via the read() routine entails 
fetching t1 encoded symbols from the servers 
and decoding them via the IDA decoding 
routine. The resulting ciphertext can be 
decrypted using Bastion to recover file f . By 
doing so, data confiden- tiality is preserved even 
if the key is exposed unless 

t= st1t2 servers are compromised. Furthermore, 
data availability is guaranteed in spite of (s − t) 
server failures. 

HYDRAstor 

We now discuss the integration of a prototype 
im- plementation of Bastion within the 
HYDRAstor grid storage system [13], [23].  
HYDRAstor  is  a  commercial secondary 
storage solution for enterprises, which consists 
of a back-end architectured as a grid of  stor- age 
nodes built around a distributed hash table. HY- 
DRAstor tolerates multiple disk, node and 
network failures, rebuilds the data automatically 
after failures, and informs users about 
recoverability of the deposited data [13]. The 
reliability and availability of the stored data can 
be dynamically adjusted by the clients with each 
write operation, as the back-end supports 
multiple data resiliency classes[13]. 

 

HYDRAstor distributes written data to multiple 
disks using the distributed resilient data 
technology (DRD); the combination of Bastion 
with DRD ensures that an adversary which has 
the encryption key and compromises a subset of 
the disks (i.e., determined by the reconstruction 
threshold), cannot acquire any meaningful 
information about the data stored  on  the  disk. 
To better assess the performance impact of 
Bastion in HYDRAstor, we evaluated the 
performance of Bastion in the newest generation 
HYDRA stor HS8-4000 series system, which 
uses CPUs with accelerated AES encryption 
(i.e., the AESNI instruction set). In our 
experiments, all written data was unique to 
remove the effect of data de duplication. Results 
show that the write bandwidth was not affected 
by the  integration  of  Bastion.  The read 
bandwidth decreased only by 3%. In both read  
and write operations, the CPU utilization in the 

system only increased marginally. These 
experiments clearly suggest that Bastion can be 
integrated in existing commercial storage 
systems to strengthen the security of these 
systems under key exposure, without affecting 
performance. 

VI. RELATEDWORK 
To the best of our knowledge, this is the first 
work that addresses the problem of securing 
data stored in multi- cloud storage systems 
when the cryptographic material is exposed. In 
the following, we survey relevant related work 
in the areas of deniable encryption, 
information dispersal, all-or-nothing 
transformations, secret-sharing techniques, 
and leakage-resilient cryptography. 

Deniable Encryption 

Our work shares similarities with the notion of 
“shared- key deniable encryption” [9], [14], [18]. 
An encryption scheme is “deniable” if—when 
coerced to reveal the encryption key—the 
legitimate owner reveals “fake keys” thus 
forcing the ciphertext to “look like” the 
encryption of a plaintext different from the 
original one—hence keeping the original 
plaintext private. Deniable en- cryption therefore 
aims to deceive an adversary which does not 
know the “original” encryption key but, e.g., can 
only acquire “fake” keys. Our security definition 
models an adversary that has access to the real 
keying material. 

Information Dispersal 

Information dispersal based on erasure codes 
[30] has been proven as an effective tool  to  
provide  reliability in a number of cloud-based 
storage systems [1],  [2], [20], [33]. Erasure 
codes enable users to distribute their data on a 
number of servers and recover it despite some 
servers failures. 

Ramp schemes [7] constitute a trade-off between 
the security guarantees of secret sharing and the 
efficiency of information dispersal algorithms. A 
ramp scheme achieves higher “code rates” than 
secret sharing and features two thresholds t1, t2. 
At least t2 shares are required to reconstruct the 
secret and less than t1 shares provide no 
information about the secret; a number of shares 
between t1 and t2 leak “some” information. 

All or Nothing Transformations 
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All-or-nothing transformations (AONTs) were 
first introduced in [26] and later studied in [8], 
[12]. The majority of AONTs leverage a secret 
key that is em- bedded in the output blocks. Once 
all output blocks are available, the key can be 
recovered and single blocks can be inverted. 
AONT, therefore, is not an encryption scheme 
and does not require the  decryptor  to  have any 
key material. Resch et al. [25] combine AONT 
and information dispersal to provide both 
fault-tolerance and data secrecy, in the context of 
distributed storage systems. In [25], however, an 
adversary which knows the encryption key can 
decrypt data stored on single servers. 

Secret Sharing 

Secret sharing schemes[5]allow a dealer to 
distribute a secret among a number of 
shareholders, such that only authorized subsets 
of shareholders can reconstruct the secret .In 
threshold secret sharing schemes[11],[27],the 
dealer defines a threshold t and each set of 
shareholders of cardinality equal to or greater 
than  t is authorized to reconstruct the secret. 
Secret sharing guarantees security against a 
non-authorized subset of shareholders; however, 
they incur a high computation/storage cost, 
which makes them impractical for sharing large 
files. Rabin [24] proposed an information 
dispersal algorithm with smaller overhead than 
the one of [27], however the proposal in [24] 
does not provide any security guarantees when a 
small number of shares (less than the 
reconstruction threshold) are 
available.Krawczyk 

[19] proposed to combine both Shamir’s [27] 
and Ra- bin’s [24] approaches; in [19] a file is 
first encrypted using AES and then dispersed 
using the scheme in [24], while the encryption 
key is  shared using  the  scheme in [27]. In 
Krawczyk’s scheme, individual ciphertext 
blocks encrypted with AES can be decrypted 
once the key is exposed. 

Leakage-resilient Cryptography 

Leakage-resilient cryptography aims at 
designing cryptographic primitives that can 
resist an adversary which learns partial 
information about the secret state of a sys- tem, 
e.g., through side-channels [22]. Different 
models allow to reason about the “leaks” of real 
implementations of cryptographic primitives 

[22]. All of these models, however, limit in some 
way the knowledge of the secret state of a system 
by the adversary. In contrast, the adversary is 
given all the secret material in our model. 

VII. CONCLUSION 
In this paper, we addressed the problem of 

securing data outsourced to the cloud against 
an adversary which has access to the 
encryption key. For that purpose, we introduced 
a novel security definition that captures data 
confidentiality against the new adversary .We 
then proposed Bastion, a scheme which ensures 
the confidentiality of encrypted data even when 
the adversary has the encryption key, and all 
but two cipher-text blocks. Bastion is most 
suitable for settings where the ciphertext blocks 
are stored in multi-cloud storage systems. In 
these settings, the adversary would need to 
acquire the encryption key, and to compromise 
all servers, in order to recover any single block 
of plaintext. 

We analyzed the security of Bastion and 
evaluated its performance in realistic settings. 
Bastion consider- ably improves (by more than  
50%)  the  performance  of existing primitives 
which offer  comparable  security under key 
exposure, and only incurs a negligible 
overhead (less than 5%) when compared to 
existing semantically secure encryption modes 
(e.g., the CTR encryption mode). Finally,  we  
showed  how  Bastion can be practically 
integrated within existing dispersed storage 
systems. 
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