

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI: 10.21276/ijcesr.2017.4.11.46
250

SECURING CLOUD DATA UNDER KEY EXPOSURE

1Dr U Feroze Khan, 2Dr K G S Venkatesan, 3Dr Nedunchezhian, 4Dr Prabakaran
1,2,3,4 Professor, Department of Computer Science and Engineering,

Malla Reddy College of Engineering, Hyderabad

Abstract—Recent news reveal a powerful
attacker which breaks data confidentiality by
acquiring cryptographic keys, by means of
coercion or backdoors in cryptographic
software. Once the encryption key is exposed,
the only viable measure to preserve data
confidentiality is to limit the attacker’s access
to the cipher text. This may be achieved, for
example, by spreading
ciphertextblocksacrossserversinmultipleadmi
nistrativedomains—thusassumingthattheadv
ersarycannotcompromiseall of them.
Nevertheless, if data is encrypted with
existing schemes, an adversary equipped with
the encryption key, can still compromise a
single server and decrypt the cipher text
blocks stored therein. In this paper, we study
data confidentiality against an adversary
which knows the encryption key and has
access to a large fraction of the cipher text
blocks. To this end, we propose Bastion, a
novel and efficient scheme that guarantees
data confidentiality even if the encryption key
is leaked and the adversary has access to
almost all cipher text blocks. We analyze the
security of Bastion, and we evaluate its
performance by means of a prototype
implementation. We also discuss practical
insights with respect to the integration of
Bastionincommercialdispersedstoragesystem
s.OurevaluationresultssuggestthatBastionisw
ell-suitedforintegrationin existing systems
since it incurs less than 5% over head
compared to existing semantically secure
encryption modes.
Index Terms—Key exposure, data
confidentiality, dispersed storage

1 INTRODUCTION

HE world recently witnessed a massive
surveillance program aimed at breaking users’
privacy. Perpetrators were not hindered by the
various security measures deployed within the
targeted services [31].For instance, although
these services relied on encryption mechanisms
to guarantee data confidentiality, the necessary
keying material was acquired by means of
backdoors, bribe, or coercion.

If the encryption key is exposed, the only
viable means to guarantee confidentiality is to
limit the adversary’s access to the cipher text,
e.g., by spreading it across multiple
administrative domains, in the hope that the
adversary cannot compromise all of them.
However, even if the data is encrypted and
dispersed across different administrative
domains, an adversary equipped with the
appropriate keying material can compromise a
server in one domain and decrypt cipher- text
blocks stored there in.

In this paper, we study data confidentiality
against an adversary which knows the
encryption key and has access to a large fraction
of the ciphertext blocks. The adversary can
acquire the key either by exploiting flaws or
backdoors in the key-generation software [31],
or by compromising the devices that store the
keys (e.g., at the user-side or in the cloud). As
far as we are aware ,this adversary invalid a tes
the security of most cryptographic solutions,
including those that protect encryption keys by
means of secret-sharing (since these keys can be
leaked as soon as they are generated).

To counter such an adversary, we propose
Bastion, a novel and efficient scheme which
ensures that plaintext data cannot be recovered
as long as the adversary has access to at most
all but two cipher text blocks, even when the

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI: 10.21276/ijcesr.2017.4.11.46
251

encryption key is exposed. Bastion achieves this
by combining the use of standard en- crypt ion
functions with an efficient linear transform. In
this sense, Bastion shares similarities with the
no- tion of all-or-nothing transform. An AONT
is not an encryption by itself, but can be used as a
pre-processing step before encrypting the data
with a block cipher. This encryption
paradigm—called AON encryption— was
mainly intended to slow down brute-force
attacks on the encryption key. However, AON
encryption can also preserve data confidentiality
in case the encryption key is exposed, as long as
the adversary has access to at most all but one
ciphertext blocks. Existing AON encryption
schemes, however, require at least two rounds of
block cipher encryptions on the data: one pre-
processing round to create the AONT, followed
by an- other round for the actual encryption.
Notice that these rounds are sequential, and
cannot be parallelized. This results in
considerable—often unacceptable—overhead to
encrypt and decrypt large files. On the other
hand, Bastion requires only one round of
encryption—which makes it well-suited to be
integrated in existing dispersed storage systems.
We evaluate the performance of Bastion in
comparison with a number of existing
encryption schemes. Our results show that
Bastion only incurs a negligible per- show that
Bastion only incurs a negligible performance
deterioration (less than 5%) when compared to
symmetric encryption schemes, and
considerably improves the performance of
existing AON encryption schemes [12], [26]. We
also discuss practical insights with respect to the
possible integration of Bastion in commercial
dispersed storage systems. Our contributions in
this paper can be summarized as follows:

• We propose Bastion, an efficient scheme
which ensures data confidentiality against an
adversary that knows the encryption key and has
access to a large fraction of the ciphertext
blocks.

• We analyze the security of Bastion, and we
show that it prevents leakage of any plaintext
block as long as the adversary has access to the
encryption key and to all but two cipher text
blocks.

We evaluate the performance of Bastion

analytically and empirically in comparison to a
number of existing encryption techniques. Our
results show that Bastion considerably improves
(by more than 50%) the performance of existing
AON encryption schemes, and only incurs a
negligible overhead when compared to existing
semantically secure encryption modes (e.g., the
CTR encryption mode).

We discuss practical insights with respect to
the deployment of Bastion within existing
storage systems, such as the HYDRA stor grid
storage system [13],[23].

The remainder of the paper is organized as
follows. InSection2,we define our notation and
building blocks. In Section 4, we describe our
model and introduce our scheme, Bastion. In
Section 5, we analyze our scheme in
comparison with a number of existing
encryption primitives. In Section 6, we
implement and evaluate the performance of
Bastion in realistic settings; we also discuss
practical insights with respect to the integration
of Bastion within existing dispersed storage
systems. In Section 7, we overview related work
in the area, and we conclude the paper in Section
8.

II. PRELIMINARIES
We adapt the notation of[12]for our settings.

We define a block cipher as a map F : {0, 1}k
×{0, 1}l → {0, 1}l, for positive k and l. If Pl is
the space of all (2l)! l-bits permutations, then for
any a ∈{0,1}k, we have F(a,·)∈Pl. We also write
Fa(x)to denote F(a,x). We model F as an ideal
block cipher, i.e., a block cipher picked at
random from BC(k,l),where BC(k,l) is the space
of all block ciphers with parameters k

and l. For a given block cipher F ∈BC(k, l), we
denoteF−1∈BC(k,l)asF−1(a,y)orasF−a1(y),for
a ∈ {0, 1}k.
Encryption modes
An encryption mode based on a block cipher

F/F −1 is given by a triple to f algorithms = (K,
E, D)where:

K The key generation algorithm is a
probabilistic algorithm which takes as input a
security parameter k and outputs a key a
∈ {0, 1}k that specifies Fa and F −1.
E The encryption algorithm is a probabilistic

algorithm which takes as input a message

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI: 10.21276/ijcesr.2017.4.11.46
252

x∈{0,1}∗,andusesFaandFa−1asoracles to
output ciphertext y.

The decryption algorithm is a deterministic
algorithm which takes as input a ciphertext y,
and uses Fa and F −1as oracles to output

Plain textx∈{0,1}∗,or⊥ify is invalid.
For correctness, we require that for any key a

← K(1k),−1foranymessagex∈{0,1−1}∗,and for
any y←E a a (x), we have x ← Da a (y).

Security is defined through the following
chosen- plaintext attack (CPA) game adapted for
block ciphers:

In the in d experiment, the adversary has

unrestrictedoracleaccesstoEFa,aF−1duringthe“fi
nd”stage.Atthis

point, A outputs two messages of equal length
x0, x1, and some state information that are
passed as input when the adversary is initialized
for the “guess” stage
(e.g.,statecancontainthetwomessagesx0,x1).Duri
ng the “guess” stage, the adversary is given the
ciphertext of one message out of x0, x1 and must
guess which message was actually encrypted.
The advantage of the adversary in the ind
experiment is: Advind(A) = |Pr[Expind(A, 0) =
1]−Pr[Expind(A, 1) = 1]

Definition 1. An encryption mode = (K, E ,
D) is ind secure if for any probabilistic
polynomial time (p.p.t.)adversary A, we have
AdvQind(A)≤ǫ, where ǫ is a negligible function
in the security parameter.

REMARK 1. The ind experiment allows the
adversary to see the entire (challenge)
ciphertext. In a sce- nario where ciphertext
blocks are dispersed across a number of storage
servers, this means that the ind- adversary can
compromise all storage servers and fetch the
data stored there in.

REMARK 2. In the ind experiment (and in
other experiments used in this paper), we adopt
the Shannon Model of a block cipher that, in
practice, instantiates an independent random
permutation for every different key. This model

has been used in previous related work [3], [12],
[17] to disregard the algebraic or cryptanalysis
specific to block ciphers and treat them as a
black-box transformation.

All or Nothing Transforms
An All or Nothing Transform (AONT) is an

efficiently computable transform that maps
sequences of input blocks to sequences of output
blocks with the following properties: (i) given all
output blocks, the transform can be efficiently
inverted, and (ii) given all but one of the output
blocks, it is infeasible to compute any of the
original input blocks. The formal syntax of an
AONTi

Q given by a pair of p.p.t. algorithms
E, D) where: = (
E The encoding algorithm is a probabilistic

algorithm which takes as input a message x∈
{0,1}∗,and out puts a pseudociphertexty.
D The decoding algorithm is a deterministic

algorithm which takes as input a pseudo- cipher
text y, and outputs either a message x
∈{0,1}∗or ⊥ to indicate that the input

pseudo-cipher text is invalid.
For correctness, we require that for

allx∈{0,1}∗, and for all y ← E(x), we have x ←
D(y).

The literature comprises a number of security
definitions for AONT (e.g., [8], [12], [26]). In
this paper, we rely on the definition of [12]
which uses the aont experiment below. This
definition specifies a block length l such that
the pseudocipher text y can be written as y =
y[1] . . . y[n], where |y[i]| = l and n ≥1.

On input j, the oracle Yb returns yb[j] and

accepts up to (n − 1) queries. The aont
experiment models an adversary which must
distinguish between the encod- ing of a message
of its choice and a random string (of the same
length),while the adversary is allowed access
to all but one encoded blocks. The advantage of
A in the aont experiment is given by

y0 ← E(x)
y1 ← {0, 1}|y0 |

b′ ← AYb (guess, state)

Expaont(A, b)
x, state ← A(find)

(xb) b
b′ ← A(guess, yb, state)

(find)
−1
a Fa,F

E 0 1

−1
a Fa,F x , x , state ← A

y ← E

Expind(A,b)
F ← BC(k, l)
a ← K(1k)

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI: 10.21276/ijcesr.2017.4.11.46
253

Advaont(A) = |Pr[Expaont(A, 0)
=1]−
Pr[ExpaQont(A,1)=1]|
Q
Definition 2. An All-or-Nothing Transform = (E,
D) isaoQnt secure if for any p.p.t. adversary A,
we have Adv (A) ≤ǫ, where ǫ is a negligible
function in the security parameter.

Known AONTs
Rivest[26]suggested the package transform

which leverages a block cipher F/F −1 and maps
m block strings to

n = m + 1 block strings. The first n − 1 output
blocks are computed by XORing the i-th
plaintext block with FK(i), where K is a random
key. The nth output block is computed XORing
K with the encryption of each

of the previous output blocks, using a key K0
that is publicly known. That is, given
x[1]...x[m],the package transform outputs y[1] . .
. y[n], with n = m + 1,where:

y[i] = x[i] ⊕FK(i), 1 ≤ i ≤ n − 1,
y[n]=K FK0 (y[i] ⊕i).

i=1
Desai [12] proposed a faster version where the
block cipher round which uses K0 is skipped and
the last output block is set to y[n] = K in−1 y[i].
Both AONTs are secure according to Definition
2[12].
REMARK 3. Although most proposed AONTs
are based on block ciphers [12], [26], an AONT
is not an encryption scheme, because there is no
secret-key information associated with the
transform. Given all the output blocks of the
AONT, the input can be recovered without
knowledge of any secret.
III. SYSTEM AND SECURITY MODEL
In this section, we start by detailing the system
and security models that we consider in the
paper. We then argue that existing security
definitions do not capture well the assumption of
key exposure, and propose a new security
definition that captures this notion.

System Model
We consider a multi-cloud storage system

which can leverage a number of commodity
cloud providers (e.g., Amazon, Google) with the
goal of distributing trust across different
administrative domains. This “cloud of clouds”

model is receiving increasing attention nowa-
days [4], [6], [32] with cloud storage providers
such as EMC, IBM, and Microsoft, offering
products for multi- cloud systems [15], [16],
[29].

In particular, we consider a system of s storage
servers S1, . . . , Ss, and a collection of users. We
assume that each server appropriately
authenticates users. For simplicity and without
loss of generality, we focus on the read/write
storage abstraction of [21] which exports two
operations:

write(v)This routine splits v into s
pieces
{v1,...,vs}and sends(vj)to server Sj, for

j ∈ [1 . . . s].
read(•)There ad routine fetches the stored

value v from the servers .For each j∈[1...s],piece
vj is downloaded from server Sj and all

Fig. 1. Our attacker model. We assume an

adversary which can acquire all the
cryptographic secret material, and can
compromise a large fraction (up to all but one) of
the storage servers. pieces are combined into v.
We assume that the initial value of the storage is
a special value ⊥, which is not a valid input
value for a write operation.

Adversarial Model
We assume a computationally-bounded

adversary A which can acquire the long-term
cryptographic keys used to encrypt the data.
The adversary may do so either (i) by
leveraging flaws or backdoors in the
key-generation software [31], or (ii) by
compromising the device that stores the keys (in
the cloud or at the user). Since ciphertext blocks
are distributed across servers hosted within
different domains, we assume that the adversary
cannot compromise all storage servers (cf.
Figure1).

In particular, we assume that the adversary can
com- promise all but one of the servers and we
model this adversary by giving it access to all but

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI: 10.21276/ijcesr.2017.4.11.46
254

λ ciphertext blocks.
Note that if the adversary also learns the user’s

credentials to log into the storage servers and
downloads all the ciphertext blocks, then no
cryptographic mechanism can preserve data
confidentiality. We stress that compromising the
encryption key does not necessarily imply the
compromise of the user’s credentials. For
example, encryption can occur on a
specific-purpose device [10], and the key can be
leaked, e.g., by the manufacturer; in this
scenario, the user’s credentials to access the
cloud servers are clearly not compromised.

(n − λ)-CAKE Security
Existing security notions for encryption modes

capture data confidentiality against an adversary
which does not have the encryption key. That is,
if the key is leaked, the confidentiality of data is
broken.

In this paper we study an adversary that has
access to the encryption key but does not have
the entire ciphertext. We therefore propose a
new security definition that models our scenario.

As introduced above, we allow the adversary
to access an encryption/decryption oracle and to
“see” all but λ ciphertext blocks. Since
confidentiality with λ = 0 is clearly not
achievable1, we instead seek an encryption
mode where λ = 1. However, having the
flexibility of setting λ ≥ 1 allows the design of
more efficient schemes while keeping a high
degree of security in practical deployments.
(See Remark 7.)

We call our security notion (n−λ) Ciphertext
Access under Key Exposure, or (n − λ)CAKE.
Similar to [12], (n − λ)CAKE specifies a block
length l such that a ciphertexty can be written as
y=y[1]...y[n]where
|y[i]| = l and n >1.

The adversary has unrestricted access to E a a

in both the “find” and “guess” stages. On input
j, the oracle Yb returns yb [j] and accepts up to n
− λ queries. Ontheonehand,unrestricted

oracleaccesstoEaFa,F−1 captures the
adversary’s knowledge of the secret key. On the
other hand, the oracle Yb models the fact that the
adversary has access to all but λ ciphertext
blocks. This is the case when, for example, each
server stores λ ciphertext blocks and the
adversary cannot compromise all servers. The
advantage of the adversary is defined as:

(n−λ)CAKE (n−λ)CAKE
AdvQ (A)=Pr[ExpQ (A, 1) =1]−
Pr[Exp(Qn−λ)CAKE(A,0)=1]
Definition 3. An encryption mode = (K, E ,

D) is (n−λ)CAKE secure if for any p.p.t.
adversary A, we have AdvQ (A) ≤ ǫ, where ǫ is
a negligible function in the security parameter.

Definition 3 resembles Definition 2 but has
two fundamental differences. First, (n −
λ)CAKE refers to a keyed scheme and gives the
adversary unrestricted access to the
encryption/decryption oracles. Second,

(n − λ)CAKE relaxes the notion of
all-or-nothing and parameterizes the number of
ciphertext blocks that are not given to the
adversary. As we will show in Sec- tion 4.2, this
relaxation allows us to design encryption modes
that are considerably more efficient than existing
modes which offer a comparable level of
security.

We stress that (n −λ)CAKE does not consider
confidentiality against “traditional” adversaries
(i.e., adversaries which do not know the
encryption key). Indeed, an indadversary is not
given the encryption key but has access to all
ciphertext blocks. That is, the ind- adversary can
compromise all the s storage servers. An (n −
λ)CAKE-adversary is given the encryption key

but can access all but λ ciphertext blocks. In
practice,

1. Any party with access to all the ciphertext
blocks and the encryption key can recover the
plaintext.

the (n − λ)CAKE-adversary has the encryption
key but can compromise up to s − 1 storage
servers. Therefore, we seek an encryption mode
with the following properties:

1) must be ind secure against an adversary
which does not know the encryption key but has
access to all ciphertext blocks (cf. Definition 1),
by compromising all storage servers.

(guess, state)
−1b (x) a a

−1 F ,F
b

(find)
Fa,F

E 0 1
−1
a x , x , state ← A

y ← E
b′←AYb,EFa,aF

Exp(n−λ)CAKE(A, b)
a ← K(1k)

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI: 10.21276/ijcesr.2017.4.11.46
255

2) must be (n − λ)CAKE secure against an
adversary which knows the encryption key but
has access to n − λ ciphertext blocks (cf.
Definition3), since it cannot compromise all
storage servers.

REMARK 4. Property 2 ensures data

confidentiality against the attacker model
outlined in Section 3.2. Nevertheless, we must
also account for weaker ad- versaries (i.e.,
traditional adversaries) that do not know the
encryption key but can access the entire
ciphertext —hence, ind security. Note that if the
adversary which has access to the encryption
key, can also access all the ciphertext blocks,
then no cryptographic mechanism can preserve
data confidentiality.

4 BASTION: SECURITY AGAINST KEY

EXPO- SURE
In this section, we present our scheme, dubbed

Bastion, which ensures that plain text data
cannot be recovered as long as the adversary has
access to all but two ciphertext blocks—even
when the encryption key is exposed. We then
analyze the security of Bastion with respect to
Definition 1 and Definition3.

Overview
Bastion departs from existing AON encryption

schemes. Current schemes require a
pre-processing round of block cipher encryption
for the AONT, followed by another round of
block cipher encryption (cf. Figure 2 (a)).
Differently, Bastion first encrypts the data with
one round of block cipher encryption, and then
applies an efficient linear post-processing to the
ciphertext (cf. Figure 2 (b)). By doing so,
Bastion relaxes the notion of all-or-nothing
encryption at the benefit of increased
performance (see Figure2).

More specifically, the first round of Bastion
consists of CTR mode encryption with a
randomly chosen key K, i.e., y′ = Enc(K, x).
The output ciphertext y′ is

then fed to a linear transform which is inspired
by the scheme of [28]. Namely, our transform
basically computes y = y′ • A where A is a
square matrix such that:(i) all diagonal elements
are set to 0, and (ii) the remaining off-diagonal

elements are set to 1. As we shown later, such a
matrix is invertible and has the nice property

that A−1 = A. Moreover, y = y′• A
ensures that each input block y′j will depend
on all output blocks yi except from yj. This
transformation—combined with the fact that the
original input blocks have high entropy (due to
semantic secure encryption)—result in an
indsecure and (n − 2)CAKE secure encryption
mode. In the following section, we show how to
efficiently compute y′ • A by means of bitwise
XOR operations.

 Bastion: Protocol Specification
We now detail the specification of Bastion.
On input a security parameter k, the key

generation algorithm of Bastion outputs a key
K ∈ {0, 1}k for the underlying block-cipher.
Bastion leverages block cipher encryption in the
CTR mode, which on input a plaintext bitstream
x, divides it in blocks x[1],...,x[m], where m is
odd2 such that each block has size l.3 The set of
input blocks is encrypted under key K, resulting

in ciphertext y′ = y′[1], . . . , y′[m + 1],
where y′ [m + 1] is an initialization vector
which is randomly chosen from

{0, 1}l.
Next, Bastion applies a linear transform to y′

as follows. Let n = m + 1 and assume A to be an
n- by- n matrix where element ai,j = 0lif i =
j or ai,j = 1l, otherwise.4 Bastion computes y =
y′ • A, where additions and multiplications
are implemented by means of XOR and AND
operations, respj=enct′ively.

That is, y[i] ∈y is computed as y[i] = j=1 (y
[j]∧aj,i),

for i = 1 . . . , n.
Given key K, inverting Bastion entails

computing y′ = y • A−1 and decrypting y′
using K. Notice that matrix A is invertible and A
= A−1. The pseudo code of the encryption and
decryption algorithms of Bastion are shown in
Algorithms 1 and 2, respectively. Both
algorithms use F to denote a generic block cipher
(e.g., AES).

In our implementation, we efficiently compute
the linear transform using 2n XOR operations as
follows:

t=y′[1]⊕y′[2]⊕•••⊕y′[n], y[i] = t
⊕y′[i], 1 ≤ i ≤n.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI: 10.21276/ijcesr.2017.4.11.46
256

Note that y′[1] . . . y′[n] (computed up to
line 6 in Algo- rithm 1) are the outputs of the
CTR encryption mode, where y′ [n] is the
initialization vector. Similar to the

CTR encryption mode, the final output of
Bastion is one block larger than the original
input.

Correctness Analysis
We show that for every x ∈ {0, 1}lm where

m is odd, and for every K ∈ {0, 1}l,we have x
= Dec(K,Enc(K,x)).

In particular, notice that lines 2-6 of Algorithm
1 and lines 9-12 of Algorithm 2 correspond to

the standard CTR encryption and decryption
routines, respectively.

1. This requirement is essential for the
correctness of the sub- sequent linear transform
on the ciphertext blocks. That is, if m is even,
then the transform is not invertible.

2. l is the block size of the particular block
cipher used.

3. 0l and 1l denote a bitstring of l zeros and a
bitstream of ones, respectively.

Fig.2.(a)CurrentAONencryptionschemesrequireapre-processingroundofblockcipherencryptionforth
eAONT,followedbyanother round of block cipher encryption. (b) On the other hand, Bastion first
encrypts the data with one round of block cipher encryption, and then applies an efficient linear
post-processing to theciphertext

Therefore, we are only left to show that the linear
transformation computed in lines 7-14 of
Algorithm 1 is correctly reverted in lines 2-8 of
Algorithm 2. In other words, we need to show
that t = i=1..n y[i] (as computed in the
decryption algorithm) matches t = i=1..n y [i]
′ (as computed in the encryption algo- rithm).

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI: 10.21276/ijcesr.2017.4.11.46
257

Notice that the last step holds because n is even
and therefore each y′[j] is XORed for anodd
number oftimes.

REMARK 5. We point out that Bastion is
not restricted to the CTR encryption mode and
can be instanti- ated with other ind-secure block
cipher (and stream ciphers) modes of encryption
(e.g., CBC,OFB).

Tointerface with our cloud storage model
described in Section 3.1, we assume that each
user encrypts the data using Bastion before
invoking the write() routine.
Morespecifically,letEnc(K,•),Dec(K,•)denotethe

encryption and decryption routines of
Bastion,respec-

tively. Given encryption key K and a file f,
the user computes v ← Enc(K,f) and invokes
write(v) in order
touploadtheencryptedfiletothecloud.Inthissettin
g, key K remains stored at the user ’

smachine.Similarly,
todownloadthefilefromthecloud,theuserinvokes
read(•)tofetchvandrunsf←Dec(K,v)torecoverf.

Security Analysis
In this section, we show that Bastion is

mathrmind
secure and (n − 2)CAKE secure.
LEMMA 1. Bastion is ind secure.

Proof 1. Bastion uses an ind secure encryption
mode to encrypt a message, and then applies a
linear

transform on the ciphertext blocks. It is
straight- forward to conclude that Bastion is ind
secure. In other words, a polynomial-time
algorithm A that has non-negligible advantage in
breaking the ind security of Bastion can be
used as a black-boxby

another polynomial-time algorithm B to
breakthe

ind security of the underlying encryption
mode. In

particular, B forwards A’s queries to its oracle
and applies the linear transformation of
Algorithm 1 lines 7-14 to the received ciphertext
before forward- ing it to A. The same
strategy is used when A

outputs two messages at the end of the find
stage: the two messages are forwarded to B’s
oracle; upon receiving the challenge ciphertext,
B applies the linear transformation and forwards
it to A. When A replies with its guess b′, B
outputs the same guess. It is easy to see that if A
has non-negligible advantage in guessing
correctly which messagewas encrypted, so does
B. Furthermore, the runningtime LEMMA 3.
Bastion is (n − 2)CAKE secure.

Proof 3. The security proof of Bastion
resembles the standard security proof of the CTR
encryption mode and relies on the existence of
pseudo-random
permutations.Inparticular,givenapolynomial-typ
e algorithm A which has non-negligible
advantage in the (n − λ)CAKE experiment with λ
= 2, we can construct a polynomial-time
algorithm B which has non-negligible advantage
in distinguishing between a true random
permutation and a pseudo-random permutation.

B has access to oracle O and uses it to answer
the encryption and decryption queries issued by
A. In particular, A’s queries are answered as
follows:

• Decryption query for y[1]. . . y[n]
1) Computet =y[1]⊕...⊕y[n]

2) Compute y′[i] = y[i] ⊕t, for 1 ≤ i≤ n
3) Compute x[i] = y′[i] ⊕O(y′[n] + i), for

1≤
i ≤ n −1
4) Returnx[1]...x[n−1]
• Encryptionqueryforx[1]...x[n−1]
1) Pick random y′[n] ∈ {0,1}l
2) Compute y′[i] = x[i] ⊕O(y′[n] + i), for

1≤
i ≤ n −1
3) Computet=y′[1]⊕...⊕y′[n]
4) Compute y[i] = y′[i] ⊕t, for 1 ≤ i≤ n
5) Returny[1]...y[n]

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI: 10.21276/ijcesr.2017.4.11.46
258

When A outputs two messages x1[1] . . .

x1[n−1] and x2[1] . . . x2[n − 1], B picks b ∈ {0,
1} at random and does the following:

1) Pick random y′ [n] ∈ {0,1}l
2) Computey[i]=xb[i]⊕O(y[n],i),for1≤i≤n−1

3) Compute t = yb[1] ⊕. . . ⊕yb[n]
4) Compute yb[i] = y′b[i] ⊕t, for 1 ≤ i ≤n
At this point, A selects (n − 2) indexes i1, . . .

in−2 and B returns the corresponding yb[i1], . . . ,
yb[in−2]. Encryption and decryption queries are
answered as above. When A outputs its answer b
′, B outputs 1

if b = b ′ , and 0 otherwise. It is
straightforward to see that if A has advantage
larger than negligible to guess b, then B has
advantage larger than negligible to distinguish a
true random permutation from a pseudorandom
one. Furthermore, the number of queries issued
by B to its oracle amounts to the number of
encryption and decryption queriesissued by A.
Note that by Lemma 2, during the guess stage, A
cannot issue a decryption query on the challenge
ciphertext since with only (n − 2) blocks, finding
the remaining blocks is infeasible.

REMARK 6. Bastion is not (n − 1)CAKE

secure. As shown in the proof of Lemma 2, the
adversary can recover one block of y′ given
any (n − 1) blocks of y. If

the adversary recovers y′[n] that is used as
an IV in the CTR encryption mode, the
adversary can easily win the (n − 1)CAKE game.
Recall that our security definition allows the
adversary to learn the encryptionkey.

REMARK 7. Bastion is (n − 2)CAKE secure
according to Definition 3. However, in a
practical deployment, we expect that each file
spans several thousands blocks 5.When those
blocks are evenly spread across servers, each
server will store a larger number of

blocks. Therefore, an (n − 2)CAKE secure
scheme such as Bastion clearly preserves data
confidential- ity unless all servers are
compromised.
4. For example, a 10MB file encrypted using
AES has morethan 600Kblocks.

TABLE 1

ComparisonbetweenBastionandexistingconstruc
ts.Weassumeaplaintext
ofm=n−1blocks.Sinceallschemesaresymmetric,
weonlyshow
thecomputationoverheadfortheencryption/encod
ingroutineinthecolumn“Computation”(“b.c.”isth
enumberofblock cipher operations; “XOR” is the
number of XORoperation
 ⋆Recall that an ind-adversary can access all
storage servers to fetch all ciphertext blocks.
Therefore, the adversary can also fetch all the
key shares and compute the encryption key.

IV.COMPARISON TO EXISTING
SCHEMES

In what follows, we briefly overview several
encryption modes and argue about their
security (according to Definitions 1 and 3) and
performance when compared to Bastion.
CPA-encryption modes
Traditional CPA-encryption modes, such as

the CTR mode, provide ind security but are only
1CAKE secure. That is, an adversary equipped
with the encryption key must only fetch two
ciphertext blocks to break data confidentiality.6

CPA-encryption and secret-sharing
Another option is to rely on the combination of

CPA secure encryption modes and
secret-sharing.

If the file f is encrypted and then shared with
ann-out-of-nsecret-sharingscheme(denotedas“e
ncrypt- then-secret-share” in the following), then
the construc- tion is clearly (n − 1)CAKE
secure and is also ind secure. However,
secret-sharing the ciphertext comes at
considerable storage costs; for example, each
share would be as large as the file f using a
perfect secret sharing scheme—which makes it
impractical for storing large files.

Secret-sharing the encryption key and
dispersing its shares across the storage servers
alongside the cipher-
textisnotsecureagainstanind-adversary.Indeed,if
the adversary can access all the storage servers
and down- load all ciphertext blocks, the
adversary may as well download all key shares
and compute the encryption key.
1. WeassumethattheCTRencryptionroutine
startswitha random IV that is incremented at

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI: 10.21276/ijcesr.2017.4.11.46
259

every blockencryption.
AON encryption
Recall that an AONT is not an encryption

scheme and does not require the decryptor to
have any secret key. That is, an AONT is not
secure against an ind-adversary which can
access all the ciphertext blocks. One alter- native
is to combine the use of AONT with standard
encryption. Rivest [26] suggests to pre-process a
mes- sage with an AONT and then encrypt its
output with an encryption mode. This paradigm
is referred to in the literature as AON encryption
and provides(n−1)CAKE security. Existing
AON encryption schemes requireat least two
rounds of block cipher encryption with two
different keys [12], [26]. At least one round is
required for the actual AONT that embeds the
first encryption key in the pseudo-ciphertext (cf.
Section 2). An addi- tional round uses another
encryption key that is kept secret to guarantee
CPA-security. However, two encryp- tion
rounds constitute a considerable overhead when
encrypting and decrypting large files. In
Appendix A, we describe possible ways of
modifying the AONTs of [26] and [12] to
achieve ind security and (n −1)CAKE

security without adding another round of
blockcipher

encryption, and we discuss their shortcomings.
Clearly, these solutions are either not

satisfactory in terms of security or incur a large
overhead when compared to Bastion and may
not be suitable to store large files in a
multi-cloud storagesystem.

Performance Comparison
Table 1 compares the performance of

Bastion with the encryption schemes considered
so far, in terms of computation, storage,
andsecurity.
Given a plaintext of m blocks, the CTR
encryption mode outputs n = m + 1 ciphertext
blocks, computed with (n − 1) block cipher
operations and (n − 1) XOR

operations. The CTR encryption mode is ind
secure but only 1CAKE secure.
Rivest AONT outputs a pseudo-ciphertext of n
= m + 1 blocks using 2(n − 1) block cipher
operations and 3(n−1) XOR operations. Desai
AONT outputs the same number of blocks but

requires only (n − 1) block cipher operations and
2(n − 1) XOR operations. Both Rivest AONT
and Desai AONT are, however, not ind secure
since the encryption key used to compute the
AONT output is embedded in the output itself.
Encrypting the output of Rivest AONT or Desai
AONT with a stan- dard encryption mode (both
[12] and [26] use the ECB encryption mode),
requires additional n block cipher
operations,andyieldsanAONencryptionthatisind

secure7 and (n − 1)CAKE secure.
Encrypt-then-secret- share (cf. Section 4.4) is
ind secure and (n − 1)CAKE secure. It requires (n
− 1) block cipher operations and n XOR
operations if additive secret sharing is used.
How- ever secret-sharing encryption results in a
prohibitively large storage overhead of n2blocks.
Bastion also outputs n = m + 1 ciphertext
blocks. It achieves ind security and (n − 2)CAKE
security with only (n − 1) block cipher
operations and (3n − 1) XOR operations.8
We conclude that Bastion achieves a solid
tradeoff between the computational overhead of
existing AON encryption modes and the
exponential storage overhead of secret-sharing
techniques, while offering a compa- rable level
of security. In Section 6, we confirm the superior
performance of Bastion by means of imple-
mentation.

V.IMPLEMENTATION AND
EVALUATION

In this section, we describe and evaluate a
prototype implementation modeling a
read-write storage system based on Bastion.
We also discuss insights with respect to the
integration of Bastion within existing
dispersed storage systems.
Implementation Setup
Our prototype, implemented in C++, emulates
the read- write storage model of Section 3.1.
We instantiate Bastion with the CTR
encryption mode (cf. Figure 1) using both
AES128 and Rijndael256, implemented using
the libmcrypt.so. 4.4.7 library. Since this
library doesnot natively support the CTR
encryption mode, we use it for the generation
of the CTR key stream, which is later XORed
with the plaintext.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI: 10.21276/ijcesr.2017.4.11.46
260

We compare Bastion with the AON encryption
schemes of Rivest [26] and Desai [12]. For
baseline comparison, we include in our
evaluation the CTR encryption mode and the
AONTs due to Rivest [26] and

1. Security according to Definition 1 is achieved
because the key used to create the AONT is
always random, even if the key used to add the
outer layer of encryption isfixed.

2.Bastionrequires(n−1)XORoperationsfortheC
TRencrytioand 2n XOR operations for the
lineartransform.

Desai [12], which are used in existing
dispersed storage systems, e.g., Cleversafe
[25]. We do not evaluate the performance of
secret-sharing the data because of its
prohibitively large storage overhead (squared
in the number of input blocks). We evaluate
our implemen- tations on an Intel(R) Xeon(R)
CPU E5-2470 running at 2.30GHz. Note that
the processor clock frequency might have been
higher during the evaluation due to the
TurboBoost technology of the CPU. In our
evaluation, we abstract away the effects of
network delays and congestion, and we only
assess the processing perfor- mance of the
encryption for the considered schemes. This is
a reasonable assumption since all schemes are
length-preserving (plus an additional block of l
bits), and are therefore likely to exhibit the
same network performance. Moreover, we
only measure the per- formance incurred
during encryption/encoding, since all schemes
are symmetric, and therefore the decryp-
tion/decoding performance is comparable to
that of the encryption/encodingprocess.

We measure the peak through put and the
latency ex- hibited by our implementations
w.r.t. various file/block sizes. For each data
point, we report the average of 30 runs. Due to

their small widths, we do not show the
corresponding 95% confidence intervals.
Evaluation Results
Our evaluation results are reported in Figure 3
and Figure 4. Both figures show that Bastion
considerably improves (by more than 50%) the
performance of ex- isting (n − 1)CAKE
encryption schemes and only in- curs a
negligible overhead when compared to
existing semantically secure encryption modes
(e.g., the CTR encryption mode) that are only
1CAKE secure.
In Figure 3, we show the peak throughput
achie- ved by the CTR encryption mode,
Bastion, Desai AONT/AON, and Rivest
AONT/AON schemes. The peak throughput
achieved by Bastion reaches almost 72 MB/s
and is only 1% lower than the one exhibited
by the CTR encryption mode. When compared
with ex- isting (n − 1)CAKE secure schemes,
such as DesaiAON encryption and Rivest
AON encryption, our results show that the
peak throughput of Bastion is almost twice as
large as that of Desai AON encryption, and
more than three times larger than the peak
throughput of Rivest AON encryption.

We also evaluate the performance of Bastion,
with respect to different block sizes of the
underlying block cipher.Our results show
that—irrespective of the block size—Bastion
only incurs a negligible performance de-
terioration in peak throughput when compared
to the CTR encryption mode. Figures 4(a) and
4(b) show the latency (in ms) incurred by the
encryption/encoding routines for different file
sizes. The latency of Bastion is comparable to
that of the CTR encryption mode—for both
AES128 and Rijandael256—and results in a
con- siderable improvement over existing
AON encryption schemes (more than 50%
gain inlatency).

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI: 10.21276/ijcesr.2017.4.11.46
261

Fig. 3. Peak throughput comparison. Unless otherwise specified, the underlying block cipher is
AES128. Each data point is averaged over30runs.Histogramsindarkbluedepict
encryptionmodeswhichoffercomparablesecuritytoBastion.Lightbluehistogramsreferto
encryption/encoding modes where individual ciphertext blocks can be inverted when the key is
exposed.

Fig. 4. Performance evaluation of Bastion. Each
data point in is
averagedover30runs.Unlessotherwisespecified,t
heunderlying
blockcipherisAES-128.CTR(256)and
Bastion(256)denote the

CTR encryption mode and Bastion encryption
routine,respectively, instantiated with
Rijandael256.

Deployment within HYDRAstor

Recall that Bastion preserves data
confidentiality against an adversary that has the
encryption key as long as the adversary does not
have access to two ciphertext blocks. In a
multi-cloud storage system, if each server stores
at least two ciphertext blocks, then Bastion
clearly preserves data confidentiality unless all
servers are compromised.

In scenarios where servers can be faulty,
Bastion can be combined with information
dispersal algorithms (e.g., [24]) to provide data
confidentiality and fault tolerance. Recall that
information dispersal algorithms (IDA),
parameterized with t1, t2 (where t1 ≤ t2), encode
data into t2 symbols such that the original data
can be recovered from any t1 encoded symbols.
In our multi- cloud storage system (cf. Section
3.1), the ciphertext

output by Bastion is then fed to the IDA
encoding routine, with symbols of size l bits, and
with parameters

t2 ≥ 2s, t1 < t2, where s is the number of
available servers. Since the output of the IDA is
equally spread across the s servers, by setting t2
≥ 2s, we ensure

that each server stores at least two ciphertext
blocks

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI: 10.21276/ijcesr.2017.4.11.46
262

worth of data. Finally, the encoded symbols are
input to the write() routine that distributes
symbols evenly to each of the storage servers.
Recovering f via the read() routine entails
fetching t1 encoded symbols from the servers
and decoding them via the IDA decoding
routine. The resulting ciphertext can be
decrypted using Bastion to recover file f . By
doing so, data confiden- tiality is preserved even
if the key is exposed unless

t= st1t2 servers are compromised. Furthermore,
data availability is guaranteed in spite of (s − t)
server failures.

HYDRAstor

We now discuss the integration of a prototype
im- plementation of Bastion within the
HYDRAstor grid storage system [13], [23].
HYDRAstor is a commercial secondary
storage solution for enterprises, which consists
of a back-end architectured as a grid of stor- age
nodes built around a distributed hash table. HY-
DRAstor tolerates multiple disk, node and
network failures, rebuilds the data automatically
after failures, and informs users about
recoverability of the deposited data [13]. The
reliability and availability of the stored data can
be dynamically adjusted by the clients with each
write operation, as the back-end supports
multiple data resiliency classes[13].

HYDRAstor distributes written data to multiple
disks using the distributed resilient data
technology (DRD); the combination of Bastion
with DRD ensures that an adversary which has
the encryption key and compromises a subset of
the disks (i.e., determined by the reconstruction
threshold), cannot acquire any meaningful
information about the data stored on the disk.
To better assess the performance impact of
Bastion in HYDRAstor, we evaluated the
performance of Bastion in the newest generation
HYDRA stor HS8-4000 series system, which
uses CPUs with accelerated AES encryption
(i.e., the AESNI instruction set). In our
experiments, all written data was unique to
remove the effect of data de duplication. Results
show that the write bandwidth was not affected
by the integration of Bastion. The read
bandwidth decreased only by 3%. In both read
and write operations, the CPU utilization in the

system only increased marginally. These
experiments clearly suggest that Bastion can be
integrated in existing commercial storage
systems to strengthen the security of these
systems under key exposure, without affecting
performance.

VI. RELATEDWORK
To the best of our knowledge, this is the first
work that addresses the problem of securing
data stored in multi- cloud storage systems
when the cryptographic material is exposed. In
the following, we survey relevant related work
in the areas of deniable encryption,
information dispersal, all-or-nothing
transformations, secret-sharing techniques,
and leakage-resilient cryptography.

Deniable Encryption

Our work shares similarities with the notion of
“shared- key deniable encryption” [9], [14], [18].
An encryption scheme is “deniable” if—when
coerced to reveal the encryption key—the
legitimate owner reveals “fake keys” thus
forcing the ciphertext to “look like” the
encryption of a plaintext different from the
original one—hence keeping the original
plaintext private. Deniable en- cryption therefore
aims to deceive an adversary which does not
know the “original” encryption key but, e.g., can
only acquire “fake” keys. Our security definition
models an adversary that has access to the real
keying material.

Information Dispersal

Information dispersal based on erasure codes
[30] has been proven as an effective tool to
provide reliability in a number of cloud-based
storage systems [1], [2], [20], [33]. Erasure
codes enable users to distribute their data on a
number of servers and recover it despite some
servers failures.

Ramp schemes [7] constitute a trade-off between
the security guarantees of secret sharing and the
efficiency of information dispersal algorithms. A
ramp scheme achieves higher “code rates” than
secret sharing and features two thresholds t1, t2.
At least t2 shares are required to reconstruct the
secret and less than t1 shares provide no
information about the secret; a number of shares
between t1 and t2 leak “some” information.

All or Nothing Transformations

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI: 10.21276/ijcesr.2017.4.11.46
263

All-or-nothing transformations (AONTs) were
first introduced in [26] and later studied in [8],
[12]. The majority of AONTs leverage a secret
key that is em- bedded in the output blocks. Once
all output blocks are available, the key can be
recovered and single blocks can be inverted.
AONT, therefore, is not an encryption scheme
and does not require the decryptor to have any
key material. Resch et al. [25] combine AONT
and information dispersal to provide both
fault-tolerance and data secrecy, in the context of
distributed storage systems. In [25], however, an
adversary which knows the encryption key can
decrypt data stored on single servers.

Secret Sharing

Secret sharing schemes[5]allow a dealer to
distribute a secret among a number of
shareholders, such that only authorized subsets
of shareholders can reconstruct the secret .In
threshold secret sharing schemes[11],[27],the
dealer defines a threshold t and each set of
shareholders of cardinality equal to or greater
than t is authorized to reconstruct the secret.
Secret sharing guarantees security against a
non-authorized subset of shareholders; however,
they incur a high computation/storage cost,
which makes them impractical for sharing large
files. Rabin [24] proposed an information
dispersal algorithm with smaller overhead than
the one of [27], however the proposal in [24]
does not provide any security guarantees when a
small number of shares (less than the
reconstruction threshold) are
available.Krawczyk

[19] proposed to combine both Shamir’s [27]
and Ra- bin’s [24] approaches; in [19] a file is
first encrypted using AES and then dispersed
using the scheme in [24], while the encryption
key is shared using the scheme in [27]. In
Krawczyk’s scheme, individual ciphertext
blocks encrypted with AES can be decrypted
once the key is exposed.

Leakage-resilient Cryptography

Leakage-resilient cryptography aims at
designing cryptographic primitives that can
resist an adversary which learns partial
information about the secret state of a sys- tem,
e.g., through side-channels [22]. Different
models allow to reason about the “leaks” of real
implementations of cryptographic primitives

[22]. All of these models, however, limit in some
way the knowledge of the secret state of a system
by the adversary. In contrast, the adversary is
given all the secret material in our model.

VII. CONCLUSION
In this paper, we addressed the problem of

securing data outsourced to the cloud against
an adversary which has access to the
encryption key. For that purpose, we introduced
a novel security definition that captures data
confidentiality against the new adversary .We
then proposed Bastion, a scheme which ensures
the confidentiality of encrypted data even when
the adversary has the encryption key, and all
but two cipher-text blocks. Bastion is most
suitable for settings where the ciphertext blocks
are stored in multi-cloud storage systems. In
these settings, the adversary would need to
acquire the encryption key, and to compromise
all servers, in order to recover any single block
of plaintext.

We analyzed the security of Bastion and
evaluated its performance in realistic settings.
Bastion consider- ably improves (by more than
50%) the performance of existing primitives
which offer comparable security under key
exposure, and only incurs a negligible
overhead (less than 5%) when compared to
existing semantically secure encryption modes
(e.g., the CTR encryption mode). Finally, we
showed how Bastion can be practically
integrated within existing dispersed storage
systems.

REFERENCES

[1] M. Abd-El-Malek, G. R. Ganger, G. R.
Goodson, M. K. Reiter, and J. J. Wylie,
“Fault-Scalable Byzantine Fault-Tolerant
Services,” in ACM Symposium on Operating
Systems Principles (SOSP), 2005, pp.59–74.

[2] M. K. Aguilera, R. Janakiraman, and L. Xu,
“Using Erasure Codes Efficiently for Storage in
a Distributed System,” in International
Conference on Dependable Systems and
Networks (DSN), 2005, pp.336–345.

[3] W. Aiello, M. Bellare, G. D. Crescenzo, and
R. Venkatesan, “Security amplification by
composition: The case of doubly- iterated, ideal
ciphers,” in Advances in Cryptology
(CRYPTO), 1998, pp.390–407.

[4] C. Basescu, C. Cachin, I. Eyal, R. Haas, and
M. Vukolic, “Ro- bust Data Sharing with

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI: 10.21276/ijcesr.2017.4.11.46
264

Key-value Stores,” in ACM SIGACT- SIGOPS
Symposium on Principles of Distributed
Computing (PODC), 2011, pp.221–222.

[5] A. Beimel, “Secret-sharing schemes: A
survey,” in Interna- tional Workshop on Coding
and Cryptology (IWCC), 2011, pp. 11–46.

[6] A. Bessani, M. Correia, B. Quaresma, F.
André, and P. Sousa, “DepSky: Dependable and
Secure Storage in a Cloud-of- clouds,” in Sixth
Conference on Computer Systems (EuroSys),
2011, pp.31–46.

[7] G. R. Blakley and C. Meadows, “Security of
ramp schemes,” in Advances in Cryptology
(CRYPTO), 1984, pp.242–268.

[8] V. Boyko, “On the Security Properties of
OAEP as an All- or- nothing Transform,” in
Advances in Cryptology (CRYPTO), 1999,
pp.503–518.

[9] R. Canetti, C. Dwork, M. Naor, and R.
Ostrovsky, “Deniable Encryption,” in
Proceedings of CRYPTO,1997.

[10] Cavalry, “Encryption Engine Dongle,”
http://www. cavalrystorage.com/en2010.aspx/.

[11] C. Charnes, J. Pieprzyk, and R.
Safavi-Naini, “Conditionally secure secret
sharing schemes with disenrollment capability,”
in ACM Conference on Computer and
Communications Security (CCS), 1994,
pp.89–95.

[12] A. Desai, “The security of all-or-nothing
encryption: Protecting against exhaustive key
search,” in Advances in Cryptology (CRYPTO),
2000, pp.359–375.

[13] C. Dubnicki, L. Gryz, L. Heldt, M.
Kaczmarczyk, W. Kil- ian, P. Strzelczak, J.
Szczepkowski, C. Ungureanu,and

M. Welnicki, “HYDRAstor: a Scalable
Secondary Storage,” in USENIX Conference on
File and Storage Technologies (FAST), 2009,
pp.197–210.

[14] M. Dürmuth and D. M. Freeman, “Deniable
encryption with negligible etection probability:
An interactive construction,” in EUROCRYPT,
2011, pp.610–626.

[15] EMC, “Transform to a Hybrid Cloud,”
http://www.emc.
com/campaign/global/hybridcloud/index.htm.

[16] IBM, “IBM Hybrid Cloud Solution,”
http://www-01.ibm.
com/software/tivoli/products/hybrid-cloud/.

[17] J. Kilian and P. Rogaway, “How to protect
DES against exhaustive key search,” in
Advances in Cryptology (CRYPTO), 1996,
pp.252–267.

[18] M. Klonowski, P. Kubiak, and M.
Kutylowski, “Practical De- niable Encryption,”
in Theory and Practice of Computer Science
(SOFSEM), 2008, pp.599–609.

[19] H. Krawczyk, “Secret Sharing Made Short,”
in Advances in Cryptology (CRYPTO), 1993,
pp.136–146.

[20] J. Kubiatowicz, D. Bindel, Y. Chen, S. E.
Czerwinski, P. R. Eaton,D.Geels, R.Gummadi,
S.C.Rhea, H.Weatherspoon,

W. Weimer, C. Wells, and B. Y. Zhao, “Ocean
Store: An Architecture for Global-Scale
Persistent Storage,” in International Conference
on Architectural Support for Programming
Languages and Operating Systems (ASPLOS),
2000, pp. 190–201.

[21] L. Lamport, “On interprocess
communication,”1985.

[22] S. Micali and L. Reyzin, “Physically
observable cryptography (extended abstract),” in
Theory of Cryptography Conference (TCC),
2004, pp.278–296.

[23] NEC Corp., “HYDRAstor Grid Storage,”
http://www.hydrastor.com.

[24] M. O. Rabin, “Efficient dispersal of
information for security, load balancing, and
fault tolerance,” J. ACM, vol. 36, no. 2, pp.
335–348,1989.

[25] J. K. Resch and J. S. Plank, “AONT-RS:
Blending Security and Performance in
Dispersed Storage Systems,” in USENIX
Conference on File and Storage Technologies
(FAST), 2011, pp. 191–202.

[26] R. L. Rivest, “All-or-Nothing Encryption
and the Package Transform,” in International
Workshop on Fast Software Encryption (FSE),
1997, pp.210–218.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI: 10.21276/ijcesr.2017.4.11.46
265

[27] A. Shamir, “How to Share a Secret?” in
Communications of the ACM, 1979,
pp.612–613.

[28] D. R. Stinson, “Something About All or
Nothing (Trans- forms),” in Designs, Codes and
Cryptography, 2001, pp. 133– 138.

[29] StorSimple, “Cloud
Storage,”http://www.storsimple.com/.

[30] J. H. van Lint, Introduction to Coding
Theory. Secaucus, NJ, USA: Springer-Verlag
New York, Inc.,1982.

[31] Wikipedia, “Edward Snowden,”
http://en.wikipedia.org/
wiki/Edward_Snowden#Disclosure.

[32] Z. Wu, M. Butkiewicz, D. Perkins, E.
Katz-Bassett, and H.
V.Madhyastha,“SPANStore:Cost-effectiveGeo-
replicated Storage Spanning Multiple Cloud
Services,” in ACM Symposium on Operating
Systems Principles (SOSP), 2013, pp.292–308.

[33] H. Xia and A. A. Chien, “RobuSTore: a
Distributed Stor- age Architecture with Robust
and High Performance,” in ACM/IEEE
Conference on High Performance Networking
and Computing (SC), 2007, p.

